
Secure SSH:
Risk
Management
Solutions

Greg Kent
Vice President, SecureIT

Introduction

Unknown or inappropriate key associations can provide an access control backdoor that bypasses controls focusing
on passwords. Consequently, managing key associations is an essential part of having a well controlled SSH
environment. In the context of authentication controls, it is essential to be able to determine exactly which accounts
on the source systems have access to connect to which accounts on the target systems. In the SSH architecture, it
is the key associations, also called trust relationships, that provide this information.

The Identity File Dilemma

In the default OpenSSH implementation, getting a handle on key associations can be quite a challenge. Imagine
that Information Security or Internal Audit identifies a key association with a particular public key. In order to
maintain the security of the system, knowing the identity of that public key or the person that key belongs to is
essential. Given the asymmetric key architecture, anyone who can use the private key that corresponds to the
public key will be authenticated and be allowed to use the association. But how do you tell who owns or has access
to that key? The possibilities are mind-boggling. A particular key in a “To Account” authorized key file on a particular
“To System” could be related to any “From Account” on any “From System” in the network.

The logical first step is to address the default implementation. This means examining every computer in the network
and looking under every user’s home directory within their ~/.ssh directory to locate an identity file containing a
matching public key. That is a huge effort, but even that isn’t enough. Users may have overridden the defaults and
stored their identify keys files elsewhere in the file system. A zealous Information Security engineer might try to scan
~/.ssh/config files for non-default IdentityFile parameters with non-default directories and file names.

Controlling Key Associations

This eBook discusses risk management for SSH implementations, including key discovery, establishing a key
association registry, and centralizing key provisioning. It is Part 2 of a series providing a comprehensive overview of
managing risks associated with SSH.

www.secureit.com

Secure SSH: Risk Management Solutions

However, even this is not comprehensive because identity files can be specified dynamically with the SSH client at
runtime, and there is no way to easily track that. In other words, it may not be practical to look beyond the default
locations. This is not ideal because the risk is probably greater for non-default identity files. A malicious user who has
access to sensitive SSH keys, someone with the keys to the kingdom, would want to conceal that fact and is not
likely to use the default IdentityFile. It would be very difficult, however, to track down these non-default locations that
could include portable media such as a USB thumb drive.

www.secureit.com

Secure SSH: Risk Management Solutions

Controlling Authorized_Keys Files
If the identity side of the key association is challenging, at least the authorized
keys component is easier to control. The only way to prevent account owners
from setting up new associations on target systems is to move the authorized
keys file out of users’ home directories and into a directory with controlled
permissions. A centralized directory under /etc such as /etc/ssh/authorized_keys
is often used. If this directory and the files contained within it are properly
secured (e.g., owned by root and writeable only by root), then account owners
will not be able to access the file to set-up up new key associations on their
own. The sshd configuration parameter AuthorizedKeysFiles can be set to the
location of a centralized directory, such as /etc/ssh/authorized_keys/%u. In this
example, each user would have a file called /etc/ssh/authorized_keys/<userID>
where authorized public keys are stored.

Centralized Provisioning of SSH Keys and Associations
The restrictive security permissions can help support centralized provisioning
controls over the creation of key associations. For instance, the Information Security department can be responsible
for provisioning key associations after obtaining proper approvals and documentation. Since key associations provide
access to systems and can subvert existing security structures, it only makes sense that standard security
provisioning controls be applied to requests for new key associations. It is only by centralizing the provisioning of new
key associations through standard processes (including formal request and approval by account owners) that SSH
keys can be controlled.

Restricting SSH Connections via the Authorized Keys File Options

Besides listing the keys that are authorized to connect as each particular user, the authorized keys files can also define
additional authorization options that can further restrict keys. These options can be quite useful for controlling and
preventing abuse or misuse of keys that are authorized to connect to system accounts or accounts used for Secure FTP
(SFTP) connections. Authorization options can be defined for each key and support a high degree of key-specific
granularity. Some of the more useful options are described below:

§ command=”<some_predefined_command>” – Whenever this key is used to connect, this forced command (and only this
command) is executed. Any commands requested by the client will be ignored. This option is useful for connections that
provide single operations, such as backups, and nothing else.

§ from=”<list_of_authorized_host_names_or_IP_addresses>” - Only connections from the specified client hosts are
permitted for this particular key. To connect, users must have the private key and connect from this designated source
location. This makes it harder for an unauthorized user to use a stolen key. This option can be used when one system
account has to connect to another system account. Restricting the connection to specific production servers can help
limit the risk of abuse.

§ no-pty – Prevents the allocation of a pseudo-terminal for interactive login sessions. Requests for an interactive login
session will fail. Clients can connect with the key only to execute non-interactive commands or copy files between
systems using the SCP command.

Restricting SSH Connection via Server-wide Configuration Parameters

Although not providing the same level of granularity, some sshd_config parameters on the target system can be used to
provide limited server-wide restrictions on permissible key associations. By default, any account on the system can receive
connections on an SSH server. Two server-wide configuration settings, which are rarely used, can restrict access to SSH
connections using rules based on “To Accounts” and “From Systems.” (Note that a “From Account” cannot be used in rules
since the SSH servers have no idea of the “From Account’s” identity, only that he has the corresponding private key to
authenticate.)

www.secureit.com

Secure SSH: Risk Management Solutions

www.secureit.com

The AllowUsers option permits only the specified “To Accounts” to receive inbound SSH connections; connections
to all other accounts are blocked. Wildcards can be used in account names (e.g., ? = a single character and * = any
sequence of characters). Accounts can also specify a host name, which is actually the name of the “From Server”,
following the “@” symbol. The setting “AllowUsers timk@secureit.com” means that local user timk is allowed to
receive connections from the remote server secureit.com. This would have the same effect as the “from” option in
the AuthorizedKeysFile.

There is also a DenyUsers setting which denies access to all specified users and permits all others. If both
DenyUsers and AllowUsers are defined, then any user that is denied will be blocked and only users that are allowed
are permitted.

There are also AllowGroup and DenyGroup parameters available that work in similar ways based on group
memberships. In some circumstances, these configuration options may be helpful. However, due to the lack of
granularity, these server-wide configurations are often not adequate for effectively securing key associations.

The PermitRootLogin parameter, however, is frequently useful. The default value “prohibit-password” allows remote
root logins via SSH using key-based authentication. A value of “no” will block any connections directly to the root
account over SSH. This will require users to first connect as a non-privileged account. They may then use su or
sudo to run commands as root. This provides an audit trail of the user assuming root’s identity. A value of “without-
password” allows key-based authentication to root, which can present some problems, as will be seen later.

Secure SSH: Risk Management Solutions

If an organization has a legacy SSH implementation with hundreds of thousands or even millions of key associations
already in existence, it isn’t enough to merely implement a controlled provisioning process to manage new associations.
The provisioning process will provide controls over new associations that will be added to the environment, but something
still has to be done about the existing inventory of associations that have accumulated over the years. If OpenSSH
operates in the default “self-serve” mode for several years, the resulting inventory of key associations is likely to contain a
large number of inappropriate, unauthorized, or otherwise risky associations. Identifying these inappropriate key
associations and removing them is key to cleaning up and securing the SSH environment.

Tracking and Reviewing Key Associations

Effective security
requires periodic review

and recertification to
ensure that the
entitlements are
appropriate and

continue to be required
and authorized.

“

www.secureit.com

1. The first step is to extract information about the public keys that
are stored in users’ AuthorizedKeysFiles on the SSH servers. After
files are centralized within a single directory (e.g.,
/etc/ssh/authorized_keys) on each server, it requires minimal effort
to pull this information from systems. Rather than track the full
public keys (which can be quite long), it is often preferable to track
public key fingerprints which are MD5 hashes of the public key
files. At this step of the discovery process, the following
information is captured in a repository of key associations: “To
Account,” “To Server”, and fingerprints of the authorized public
keys. If additional authorization options are defined in the
authorized keys files (e.g., forced commands, from restrictions, or
no-pty), then it would be useful to capture those options as well.
This information should be documented for periodic review and
validation.

Even after the initial cleanup has been completed, additional tracking and reviewing of key associations should be
performed. Effective security requires periodic review and recertification to ensure the entitlements are appropriate
and continue to be required and authorized. Due to Sarbanes-Oxley (SOX) and other regulatory requirements, most
organizations have implemented quarterly and semi-annual access recertification processes. Ideally, reviews of SSH
key associations should fit into those existing recertification cycles.

Secure SSH: Risk Management Solutions

In order to validate the existing inventory of SSH key associations and
recertify on an ongoing basis, organizations need a process to discover
key associations. Most organizations perform this key association
discovery task via scripts that run regularly on all systems in the
environment. There are usually three steps to the process:

2. The second step is to capture information about the identity of the public
keys on the SSH clients. At a minimum, this requires scanning every user’s
home directory on every system for the default identity files. Keep in mind
that an SSH client can be run on virtually any system (server or
workstation) in the network. In addition, user home directories can be
scattered throughout the file system. This is a lot of information to scan!
After an identity file is found, the script typically generates a public key
signature file and determines the user the key belongs to by identifying the
owner of the home directory in which the identity file was located. Through
this step of the discovery process, the following information is tracked:
“From Account”, “From Server”, and fingerprints of public keys within the
identity files. As mentioned previously, user identity files can be stored in
directories other than the default location. Therefore, it is important to
examine user-level ~/.ssh/config files (also stored in user home directories)
to identify any non-standard locations. Including user-defined IdentityFiles
parameters within the discovery process will increase the coverage of keys,
but this will not detect all SSH keys in the environment because run-time
options can be used to specify other directories. As mentioned earlier, it is
not practical to identify every single SSH private key identity in the network,
especially if a malicious user is determined to hide them. Using the
authorization options on keys can help to manage the risk of an unidentified
identity. To be absolutely sure that there is no risk, it is necessary to delete
the association with the old keys and generate new keys. Periodic re-
generation of keys is an accepted security practice for helping to protect
keys from unauthorized use.

www.secureit.com

Secure SSH: Risk Management Solutions

3. The third step of the discovery process is to correlate the information to produce a complete mapping of the
key associations. Both the authorized key information and the identity file information include the public key
fingerprint, which serves as a key field that can be used to join the “From” information (from the SSH client) and
the “To” information (from the SSH server). The resulting information defines a complete key association trust
relationship (“From Account,” “From Server,” “To Account,” and “To Server”) for a public key fingerprint.

www.secureit.com

Usually, information about the key association is stored in a registry for analysis. This registry can be integrated into
the provisioning process so that new associations are added to the registry as they are created in the environment. It
is also possible to re-scan the environment through the key discovery process described above on a regular basis and
rebuild the key association registry for analysis purposes. Once complete, the registry of key associations will be
critical in assessing the security risk of SSH key-based authentication and managing the security of the SSH
environment.

Typical and recommended uses of an SSH key association registry to provide effective SSH key management include
the following:

§ Analyzing the existing inventory for risky or unauthorized associations that should be removed. This analysis can be
based on high-level categories of associations. For example, any association that allows a user account to connect
to a system account (an individual “From Account” and system “To Account”) presents risk of unauthorized access
and should be avoided. Risks of these and other categories of key associations are discussed in the next eBook.
Analysis can also be performed for specific accounts. For instance, if the organization has highly sensitive systems,
system accounts for those systems warrant additional scrutiny and review.

§ Performing periodic recertification of associations to validate their continuing need and appropriateness. The “To
Account” owner should review the associations and validate that they are still required and appropriate. Given the
likely volume of associations, it may be appropriate to focus the recertification only on those that present risk.
Therefore, key associations where the “To Account” is identical to the “From Account” may not require recertification.
These associations with matched accounts present minimal risk because users are allowed to access only their own
accounts.

Key Association Registry

Secure SSH: Risk Management Solutions

§ Reviewing new associations within authorized keys files that have bypassed the authorized provisioning
process. Moving the authorized keys file under /etc prevents most users from provisioning keys, but system
administrators (or others with access to root) could still access these files. Reconciling the associations within the
authorized keys files against the registry of authorized associations that went through the provisioning process may
help identify any rogue backdoors that were created directly by root users. Doing this sort of validation serves as a
check on administrative users to guarantee that no associations bypassed the authorization and provisioning process.

§ De-provisioning keys and key associations when users terminate or access is no longer needed. When
employees leave the organization or system accounts no longer require access, good security practice mandates that
keys/associations be disabled to prevent misuse. At a minimum, all key associations where the “From Account”
belongs to a terminated user or retired system account should be removed. This is achieved by logging on to each “To
Server” where the association is defined, accessing each “To Account’s” authorized keys file, and removing the public
key that matches the “From Account’s” key fingerprint. After all the associations have been removed from the
authorized keys files, no additional action is necessary, although the private keys could be removed from the user’s
home directory on the “From System”. Usually, however, the user’s home directory will be removed via other de-
provisioning activities, and this will consequently delete the private key from the environment (assuming the user’s
keys were stored there).

§ Identifying key associations involving keys with unknown owners. In all likelihood, some of the public keys that
occur within authorized keys files on SSH servers will not be found through the scanning of SSH client identity files.
Although these keys are authorized to connect through SSH authorized keys file, the owners of the keys have not
been identified and no information exists regarding who can use the keys to connect. These unknown keys can occur
due to several circumstances. For instance, keys could be stored in non-standard locations that were not scanned in
the discovery process, or the keys may have been deleted and may no longer be accessible. Although it is difficult to
determine exactly how to interpret these unknown keys, an excessively high number of them could indicate that the
key discovery process and key association registry are not working effectively. In addition, associations with unknown
keys could represent significant risk. Since the owners and users of these keys are unknown, it is not possible to
determine if these associations introduce risk through unauthorized access. These associations warrant additional
investigation and review. For high-risk “To Accounts,” keys with unknown owners should be carefully monitored to
determine if they are being used. If not, then these key associations should be removed.

www.secureit.com

Secure SSH: Risk Management Solutions

This eBook has outlined methods to properly secure and manage SSH, including key discovery, establishing a key
association registry, and centralizing key provisioning. In our next eBook we will review the risks inherent in specific
types of key associations that must be considered when creating new or validating existing associations, and provide
suggestions for mitigating these risks.

www.secureit.com

We hope you find this eBook helpful in your organization’s path towards achieving a stronger security posture. As
demonstrated above, SecureIT understands the operational practices and risks around network access but we also
realize that no two organizations are alike. When SecureIT engages with our clients, we invest the time and
resources to understand your organization, your software or services solution, and where you are in your journey.

Partnering with SecureIT to discover and mitigate security risks means ensuring that both your immediate and long-
term compliance goals are achieved in an efficient manner so you can focus on the core job of increasing sales
opportunities and growing revenue. Please contact us today, we would love to learn about your situation.

§ Rotating keys for risky associations. Periodic rotation of encryption keys, which is basically creating new keys to
replace older ones, is a generally accepted practice to maintain the security of cryptography over time. The registry
of all key associations in the environment provides the necessary information to enable key rotation. Newly
generated keys would need to be placed in the “From User’s” home directory on each of the “From Servers.” Then
that key would need to be installed in the authorized keys files of the “To Users” on each of the “To Servers.” As
can be imagined, rotating SSH keys can require a significant amount of work. Therefore, it may not always be
feasible to adopt a one-size-fits-all approach to key rotation. It may be acceptable to apply a tiered approach to key
rotation, whereby only the highest risk keys are periodically regenerated and others keys may have longer lives.

It should also be noted that the key generation utility of OpenSSH supports an optional comment field that can be
used to store the identity of the user to whom the key belongs and information such as a change request number. If
keys are centrally provisioned by Information Security, this comment field can be used to track the identity of keys that
are stored in the Authorized Keys File itself.

Conclusion

Partnering with SecureIT

Secure SSH: Risk Management Solutions

x

12110 Sunset Hills Road
Suite 600
Reston, VA USA 20190
703.464.7010
www.secureit.com

About SecureIT

SecureIT provides risk, compliance, and cybersecurity services to enterprises, government
entities, and cloud service providers. Our certified professionals assess cyber risk, conduct
targeted security assessments, and ensure compliance with regulatory requirements. Every
day, we partner with our clients to deliver solutions critical to protecting and growing business.

© 2018 SecureIT, Inc. All rights reserved.

