
Secure SSH:
Policy &
Prevention

Greg Kent
Vice President, SecureIT

Introduction

The risks of key associations need to be considered when a new
association has been requested, as well as in analyzing and
validating existing “legacy” associations that have accumulated over
the years. Although each association presents its own unique
risks, there are broad categories of associations that share common
themes of risk and have implications for control. It is advisable for
organizations to make policy decisions about these categories of
key associations, defining which are acceptable and which are not.
In most cases, at least some of the key associations should be
prohibited by policy. The risks and along with suggested
approaches for handling these associations are discussed in table
starting on the next page.

Policy Control to Address Risks of Key Associations

This eBook covers the risks inherent in specific types of key associations that must be considered when
creating new or validating existing associations and provides suggestions for mitigating these risks. This third
and final eBook on Secure SSH wraps up with recommendations for enterprise-wide standardized SSH
configurations, including specific SSH server settings.

www.secureit.com

Secure SSH: Policy and Prevention

…the default
OpenSSH implementation

follows a self-serve key
management model that

can introduce security risk
and result in inappropriate
access through the use of

key associations.

“

www.secureit.com

Type of
Association Discussion of Risk and Other Concerns

Person Account
to System
Account

This association is risky since it allows people to assume the identity of system accounts. Passwords for
system accounts are generally tightly controlled to prevent abuse and misuse of system accounts.
Access through SSH key associations can circumvent these controlled processes and allow
unauthorized users to obtain/retain access. This is especially a risk if security associations are not well-
controlled (e.g., validated from time-to-time) and private keys not well protected. These associations
should be avoided.

System Account
to Person
Account

It is hard to imagine the circumstances under which such a key association would be required. Systems
accounts should only be used for production processes and these should never perform functions in the
security context of individual person accounts. These associations can also be used for transitive
attacks. For example if PersonA can associate with System1 and System1 can associate with PersonB,
then essentially PersonA can connect as PersonB. Transitive relationships can get very complicated
very quickly, so it is best to avoid them. The ideal solution is to segregate Person Accounts and System
Accounts and avoid any associations between those two categories.

System-Based Risks

Secure SSH: Policy and Prevention

www.secureit.com

Type of
Association Discussion of Risk and Other Concerns

System Account
to same System
Account

Since both the “From Account” and the “To Account” are the same system account used by automated
processes, the risk of these associations is negligible. In many cases, a centralized authentication
repository (such as LDAP) provides a single authentication source throughout the environment. In this
case, there is no risk for key associations with the same account name.

However, any association where the “From Account” is a system account potentially presents risk in terms
of protecting the keys. Keys used by system accounts often do not have passphrases defined. The risk
and possible solutions for this issue were discussed in the first eBook in this series (e.g., using an ssh
agent). In addition, appropriate authorization options to limit commands, source addresses, and interactive
logons should also be considered since these options can greatly minimize the impact if a key is stolen.

System Account
to different
System Account

Since both the “From Account” and the “To Account” are system accounts used by automated processes,
the risk of these associations may be acceptable, provided that there is a legitimate business need for the
association.

Any Account to
Root Account

Any account, system or person that can connect to the root account introduces risk. Any remote
connections to root should be avoided. In keeping with good security practices, systems should require
users to connect locally as a lower-privileged account and then SU to root in order to provide accountability
and audit trail. There is an sshd_config parameter that will disallow SSH connections to root. A setting of
“PermitRootLogin no” will prevent all root logons. Settings of “yes” or “without-password” allow connections
via ssh keys, and should be avoided.

Secure SSH: Policy and Prevention

www.secureit.com

Type of
Association Discussion of Risk and Other Concerns

Person Account to
same Person
Account

When key associations are between like accounts (e.g., To Account is FredW and From Account is FredW),
there is little risk from the association itself since users can only connect to their own accounts on different
systems. However, person-to-person associations can be a potential headache because there can be a lot
of these associations. A single user might want to be able to connect to dozens or even hundreds of
systems throughout the network, which means a new key association must be setup for each target system-
-a significant burden on the provisioning operation.

In addition, there are other risks and challenges for keys assigned to person accounts, such as users
compromising the security of their private keys by having keys without passphrases or sharing keys with
other users. If privacy of the private key cannot be assured, then key-based authentication may be less
reliable than traditional password controls. At least passwords are generally stored securely on the system
and are not susceptible. For this reason, some organizations decide to disallow person-to-person
associations and require users to connect to SSH using password authentication. In this model, key
associations are permitted only for system accounts, which can be more easily managed and controlled. If
the number of person associations is not overwhelming, the Information Security provisioning function could
create the keys and use high-quality passphrases during key generation.

Person Account to
different Person
Account

By definition, these associations allow one human user to assume the identity of another human user. This
causes a loss of accountability and undermines access controls. These types of associations should never
be permitted.

Secure SSH: Policy and Prevention

www.secureit.com

Type of
Association Discussion of Risk and Other Concerns

Multiple “From
Accounts” (Person
or System) for the
same key

Use of the same key by multiple “From Accounts” indicates that the key has been shared and that the privacy of
the private key has been compromised. At a minimum, it is necessary to remove all known instances of “From
Accounts” with unauthorized keys. That is, delete the private key from the home directories of all “From
Accounts” whose logon ID does not correspond to the “To Account.” However, since the key was compromised,
this approach does not address the risk that unauthorized copies of the private key may be stored elsewhere.
The safest approach is to delete all instances of the key, remove the key association entirely, and generate a
new key and key associations. After the old association is removed, no one with an unauthorized copy of the
private key can connect. Then create a new key that can be protected from the beginning and create new key
associations that are required so that each “From Account” uses a different key.

Unknown Keys
occur in the
authorized keys
files

Although these keys are authorized to connect through SSH authorized keys file, the owners of the keys have
not been identified and no information exists regarding who can use the keys to connect. Although it is difficult
to determine exactly how to interpret these unknown keys, an excessively high number of them could indicate
that the key discovery process and key association registry are not working effectively. In addition, associations
with unknown keys could represent significant risk. Since the owners and users of these keys are unknown, it is
not possible to determine if these associations introduce risk of unauthorized access. It is possible, for example,
that some of the unknown keys may exist because malicious users have intentionally hidden the private key in
order to preserve their access to system accounts. Because of the potential risk, the unknown keys should be
removed from the AuthorizedKeysFiles for system accounts. However, there is also a Denial of Service (DoS)
risk with removing these associations since the keys could also be used by system “From Accounts” that are
required. Therefore, careful analysis is required before associations are removed. Removal of associations of
unknown accounts to person “To Accounts” are relatively more difficult to detect since there would be no impact
on production and users could still authenticate through passwords. Associations to system “To Accounts” may
require extensive logging in order to identify if the unknown public keys are dormant or are still being used.
Obviously, if unknown public keys have not been used for an extended period of time, they can be safely deleted
without impacting any processing.

Secure SSH: Policy and Prevention

www.secureit.com

System-Based Risks

Type of
Association Discussion of Risk and Other Concerns

Low Risk
Systems to High
Risk Systems

Some organizations have different levels of control applied to different systems. For instance,
systems supporting financially significant applications may be subject to tighter restrictions and
control practices than systems related to lower risk non-financial applications. Or systems in a
testing environment may be more loosely secured
than systems in production. If this is the case,
then associations between these categories of
systems should be avoided. If low risk systems
can be compromised more easily by attackers or
provide greater access to humans, these systems
could be the means through which attacks or
unauthorized access spreads to higher-risk systems.

External
Systems to
Internal Systems

Although session encryption capabilities of SSH seem
ideally suited to connections that span across networks,
there are risks associated with keys that need to be considered. Once keys are sent outside the
network, they are no longer in the control of the organization. Practices that might be enforced
internally may not be enforced outside the network. If a key is compromised from an external
system, then internal systems may be at risk. Reasonable measures should be taken to help
protect keys from compromise (such as generating keys internally with strong phrases and securely
distributing them to users outside the network). If inbound SSH sessions cannot be completely
blocked at the perimeter, then at least firewall restrictions on the source and destination of SSH
connections should be used to restrict access as much as possible.

Secure SSH: Policy and Prevention

A final element of effective management of SSH keys and trust relationships is having standardized SSH configurations
across the environment. Configurations can be defined for both the SSH client and the SSH server. As mentioned
earlier in previous eBooks, the configuration of the SSH client can be quite challenging, since users can override any
standard configuration in the OpenSSH model. Fortunately, there are relatively few highly significant configuration
settings on the client side of SSH. The IdentityFile parameter (as discussed earlier) and the StrictHostKeyChecking
parameter (which concerns SSH host keys and is beyond the scope of this eBook) are the most significant settings.

There are several SSH server configurations in the /etc/ssh/sshd_config file that are significant and should be
assessed. The typical controls for managing configurations should be deployed, including baseline configuration
standards/builds and periodic validation of server settings in production to detect non-compliance and configuration
drift. Some of the critical settings that should be assessed are described in the table below:

www.secureit.com

sshd_config Parameter Defaults Recommended Value

AuthorizedKeysFile – can be used to store
authorized keys files in a centralized
directory that blocks user update access,
thereby providing enforcement for an
authorized provisioning process

~/.ssh/authorized_keys

/etc/ssh/authorized_keys/%u or
some other central directory
outside of users’ home directories
and properly secured to deny
write access

Ciphers – used to define the ciphers and key
lengths that are supported

Version 2 only:
aes128-cbc, 3des-cbc, blowfish-cbc, cast128-
cbc, arcfour128, arcfour256, arcfour, aes192-
cbc, aes256-cbc, aes128-ctr, aes192-ctr,
aes256-ctr.
For Solaris:
aes128-ctr, aes128-cbc, 3des-cbc, blowfish-cbc,
arcfour

Default or only 128+ bit ciphers,
or stronger if required

HostBasedAuthentication – can be used to
refuse or enable host-based authentication

no Default or no (If set to yes, then
IgnoreRhosts should be yes)

Standardized Configuration

Secure SSH: Policy and Prevention

www.secureit.com

sshd_config Parameter Defaults Recommended Value

IgnoreRhosts – can be used to disable used of
.rhosts and .shosts files

yes
Default or yes (This has no affect if
HostBasedAuthentication is no)

LogLevel – can be used to specify the level of
logging that is performed by the SSH server

INFO
Default or INFO or VERBOSE

Note: verbose may generate significantly more log
data

MaxAuthTries – prevents password brute forcing by
setting a cap on failed attempts

6 Default or 6 or less

PermitEmptyPasswords – can be used to disallow
empty password

no Default or no

PermitRootLogin – can be used to prevent access to
the root account

yes no

Notes:
* Setting the configuration option to prevent direct access to the root account via keys helps to avoid the risk of unauthorized key associations for root access.
* If HostBasedAuthentication is used, then there are two things to consider. First, each host must have a unique host key (e.g., multiple hosts should not share
the same key). SSH uses host keys to validate the identity of systems, so sharing a host key makes it easier to defeat the host authentication process.
If host authentication is used, then host keys should be reviewed to make sure that keys are not shared across systems. Second, IgnoreRhosts should be
enabled. Host based authentication uses the standard “r” services trust files (/etc/hosts.equiv and ~/.rhosts) and SSH-specific trust files (/etc/shosts.equiv and
~/.shosts) to define the trust relationships that are permitted. Essentially, these 4 files define the same sort of trust associations that are defined in the
authorized keys file for user keys. Users will be able to access the ~/.rhosts and ~/.shosts files in their home directories, and can therefore create new trust
relationships at will. In order to lock-down the trust relationships so that they can be properly controlled, SSH must be configured to ignore those trust files that
are directly accessible to the end user, which is what the IgnoreRhosts option does. When this option is set, then all trust relationships must be defined within
either the hosts.equiv and shosts.equiv files, both of which are locked-down under the /etc directory. This approach eliminates “self-serve” trust relationships
and enables host based trust relationships to be managed and controlled in a similar way as is described in this paper for user keys.
* Default values on OSX maybe different than the values listed here.

Secure SSH: Policy and Prevention

www.secureit.com

sshd_config Parameter Defaults Recommended Value

Protocol – can be used to only
allow specific SSH protocol
versions to be used

2,1
2 [Version 1 is susceptible
to some security attacks.]

PubKeyAuthentication – can be
used to enable public keys

yes Default or yes

StrictModes – can be used to
ensure that the SSH server
program will not execute if the
authorized keys file and home
directory is insecure

yes Default or yes

UsePrivilegeSeparation – can
be used to prevent privilege
escalation attacks by spawning
least-privileged processes

yes Default or yes

Secure SSH: Policy and Prevention

SSH is a widely deployed facility for establishing encrypted connections. Although it was intended to solve a security
problem, the default OpenSSH implementation follows a self-serve key management model that can introduce security
risk and result in inappropriate access through the use of key associations. In order to properly secure and manage
SSH, traditional controls need to be applied to key associations, including centralized provisioning and de-
provisioning, periodic recertification, and centralized tracking of user entitlements.

Conclusion

To accomplish these objectives, it is necessary first to centralize authorized keys files into a directory that is not
accessible to users. Then it is useful to scan the environment and aggregate information about authorized keys on
SSH servers and user identities on SSH clients. A registry of SSH key associations can provide valuable information
to help identify inappropriate or otherwise risky associations that are defined in the environment. These reasonable
steps can help organizations that do not have a formal PKI infrastructure to manage and control the deployment of
OpenSSH keys and key associations. Since key-based authentication is critical feature of SSH, effective key
management is required in order to have a reliable authentication mechanism and prevent keys from being used to
circumvent controls that exist for password-based logons. More fundamentally, key management is needed so
organizations can restrict system access to known, authorized users.

For more information on SSH key management, see the draft IETF Best Current Practice (BCP) co-written by
SecureIT at https://www.ietf.org/archive/id/draft-ylonen-sshkeybcp-01.txt

www.secureit.com

We hope you have found SecureIT’s eBook series on Secure SSH helpful in your organization’s path towards
achieving a stronger security posture. As demonstrated above, SecureIT understands the operational practices and
risks around network access but we also realize that no two organizations are alike. When SecureIT engages with
our clients, we invest the time and resources to understand your organization, your software or services solution,
and where you are in your journey.

Partnering with SecureIT to discover and mitigate security risks means ensuring that both your immediate and long-
term compliance goals are achieved in an efficient manner so you can focus on the core job of increasing sales
opportunities and growing revenue. Please contact us today, we would love to learn about your situation.

Partnering with SecureIT

Secure SSH: Policy and Prevention

https://www.ietf.org/archive/id/draft-ylonen-sshkeybcp-01.txt

x

12110 Sunset Hills Road
Suite 600
Reston, VA USA 20190
703.464.7010
www.secureit.com

About SecureIT
SecureIT provides risk, compliance, and cybersecurity services to enterprises, government
entities, and cloud service providers. Our certified professionals assess cyber risk, conduct
targeted security assessments, and ensure compliance with regulatory requirements. Every
day, we partner with our clients to deliver solutions critical to protecting and growing business.

© 2018 SecureIT, Inc. All rights reserved.

